Guglielmina Mutani & Valeria Todeschi*

*FULL, Energy Department, Polytechnic of Turin

TOPIC 10

Energy consumption monitoring and benchmarking, energy modelling of building and district performances

urban energy atlas
engineering energy models
energy performance certificates
energy savings
retrofit interventions
energy-efficiency scenarios

A place-based engineering model to map energy efficiency scenarios

Background

IEECB&SC'20

- The civil sector is the most important energy consumer in the EU:
 - → 97% of the EU building stock is not energy efficient
 - → only 0.2% of residential buildings in the EU are undergoing significant retrofit interventions
- How to achieve energy and climate targets?

2020 Package 2030 Framework

GHG emission reduction: 20%

Increase of RES use: 20%

Increase of EE: 20%

GHG emission reduction: 40%

Increase of RES use: 32%

Increase of EE:

32.5%

The **Energy Performance Building Directive** introduced a tool to monitor and promote EP improvements in buildings:

→ the Energy Performance Certificate (EPC) schemes

11th International Conference IEECB&SC'20

TOPIC 10: Energy consumption monitoring and benchmarking, energy modelling of building and district performances

A place-based engineering model to map energy efficiency scenarios

EPBD implementation in Italy

- National Decree 192/2005 relating to EP in buildings (ACE scheme):
 - → Article 6 on 'Energy performance certificate, release and posting'
 - → 8 energy classes (A+ G)
 - → Introduction of minimum requirements and the mandatory energy certification
- National Decree 63/2013 the new Italian EPC Regulations (APE scheme):
 - → From ACE to APE
 - → 10 energy classes (A4 G)
 - → Mandatory to provide the APE when a home is put for sale or for rent
 - → Establishing new methodology to calculate the EP of buildings
 - → New target for all "new buildings to be nearly zero-energy"

Plaque in commercial advertisements from Oct. 2015

Objectives of the work

EPCs database as a tool to support **EE** in buildings

IEECB&SC'20

- Assessment of the EP of buildings in the city of Turin using the EPCs database
- 2. Optimization of an engineering monthly model using the EPCs database able to describe the real characteristics of the buildings
- 3. Identification of **energy efficiency scenarios** according to the energy performance of existing building stock
- 4. Updating of an urban-energy atlas designed for the city of Turin (Italy) giving information of the energy retrofit trend

Assessment of EPCs Database

EPCs database as a tool to support EE in buildings

IEECB&SC'20

- Assessment of the EP of buildings in the city of Turin using the EPCs database
- 2. Optimization of an engineering monthly model using the EPCs database able to describe the real characteristics of the buildings
- 3. Identification of **energy efficiency scenarios** according to the energy performance of existing building stock
- 4. Updating of an urban-energy atlas designed for the city of Turin (Italy) giving information of the energy retrofit trend

Assessment of EPCs Database

Acquisition and analysis of EPCs

IEECB&SC'20

- Classification on the type of residential buildings
- Classification on the construction period
- Classification on the motivation for the EPCs' release
- Analysis of consumptions

$$\begin{split} \textbf{E}_{\text{savings,retrofit}} &= \textbf{EP}_{\text{gl,generic}} \textbf{-} \, \textbf{EP}_{\text{gl,retrofit}} \\ \textbf{E}_{\text{savings,RES}} &= \textbf{EP}_{\text{gl,generic}} \textbf{-} \, \textbf{EP}_{\text{gl,RES}} \\ \textbf{E}_{\text{savings,int}} &= \textbf{EP}_{\text{gl,int}} \textbf{-} \, \textbf{EP}_{\text{gl,reach,int}} \end{split}$$

Number of EPCs in Turin and in the 33 meshes distinguishing the motivation release

Number of EPCs	Area	Generic		Retrofit		RES	
		Apartments	Detached Houses	Apartments	Detached Houses	Apartments	Detached Houses
	Turin	167,899 (95%)	5,632 (83%)	5,786 (3%)	760 (11%)	4,030 (2%)	374 (6%)
	33 districts	53,174 (97%)	429 (81%)	992 (2%)	49 (9%)	581 (1%)	51 (10%)

A place-based engineering model to map energy efficiency scenarios

Assessment of EPCs Database

Typologies of retrofit interventions in the 33 meshes connected to the DH network: apartments and detached houses (EPCs database up to September 2015)

A place-based engineering model to map energy efficiency scenarios

Energy Efficiency trend

Cumulative energy savings for **apartments** and for **detached houses** in the 33 districts (EPCs from 2009 to 2015)

APARTMENTS

DETACHED HOUSES

A place-based engineering model to map energy efficiency scenarios

Engineering Model optimization

EPCs database as a tool to support EE in buildings

- Assessment of the EP of buildings in the city of Turin using the EPCs database
- 2. Optimization of an engineering monthly model using the EPCs database able to describe the real characteristics of the buildings
- 3. Identification of **energy efficiency scenarios** according to the energy performance of existing building stock
- 4. Updating of an urban-energy atlas designed for the city of Turin (Italy) giving information of the energy retrofit trend

A place-based engineering model to map energy efficiency scenarios

Urban-Scale Engineering Model

Building energy balance at urban scale during the heating season

$$Q_{H,nd} = \sum Q_{H,ht} - \eta_{H,gn} \cdot \sum Q_{gn} = \left(\sum Q_{H,tr} + \sum Q_{H,ve}\right) - \eta_{H,gn} \cdot \left(\sum Q_{int} + \sum Q_{sol}\right)$$

A place-based engineering model to map energy efficiency scenarios

Urban-Scale Engineering Model

IEECB&SC'20

TOPIC 10: Energy consumption monitoring and benchmarking, energy modelling of building and district performances

A place-based engineering model to map energy efficiency scenarios

Engineering Model optimization

Thermal transmittances and system efficiencies values elaborated from EPCs database distinguishing generic and retrofit motivation (EPCs from 2009 to 2015)

Model Application

IEECB&SC'20

Comparison of **measured and simulated energy consumptions** between old (i) and new (ii) engineering model

Heating and Domestic Hot Water Model

Heating Model

A place-based engineering model to map energy efficiency scenarios

Model Application

Comparison of absolute relative error between old (i) and new (ii) monthly models

IEECB&SC'20

A place-based engineering model to map energy efficiency scenarios

Energy Efficiency scenarios

EPCs database as a tool to support EE in buildings

- 1. Assessment of the **EP of buildings** in the city of Turin using the EPCs database
- 2. Optimization of an engineering monthly model using the EPCs database able to describe the real characteristics of the buildings
- Identification of energy efficiency scenarios according to the energy performance of existing building stock
- 4. Updating of an urban-energy atlas designed for the city of Turin (Italy) giving information of the energy retrofit trend

11th International Conference IEECB&SC'20

TOPIC 10: Energy consumption monitoring and benchmarking, energy modelling of building and district performances

A place-based engineering model to map energy efficiency scenarios

Energy Efficiency scenarios

- Monthly space heating consumption of two meshes for the heating season 2014-2015:
 - → measured data (in gray)
 - → simulated data (in red) for the old (i) and the optimized (ii) models
- Two retrofit scenarios have been investigated (in blue):
 - → thermal insulation of the opaque envelope (S1)
 - → thermal insulation of the opaque envelope and windows replacement (S2)

Results of two meshes

A place-based engineering model to map energy efficiency scenarios

Energy Efficiency scenarios

Annual energy savings at district scale after energy renovation strategies

A place-based engineering model to map energy efficiency scenarios

Urban-Energy Atlas updating

EPCs database as a tool to support EE in buildings

IEECB&SC'20

- Assessment of the EP of buildings in the city of Turin using the EPCs database
- 2. Optimization of an engineering monthly model using the EPCs database able to describe the real characteristics of the buildings
- 3. Identification of energy efficiency scenarios according to the energy performance of existing building stock
- 4. **Updating of an urban-energy atlas** designed for the city of Turin (Italy) giving information of the energy retrofit trend

IEECB&SC'20

TOPIC 10: Energy consumption monitoring and benchmarking, energy modelling of building and district performances

A place-based engineering model to map energy efficiency scenarios

Urban-Energy Atlas updating

District heating area

Buildings classification by type of users

EPCs data of residential sector

A place-based engineering model to map energy efficiency scenarios

Conclusions

- This work presents an optimization of an urban-scale energy model and an updating of the energy atlas for the city of Turin, through the use of EPCs database of Piedmont Region
- The presented urban-energy atlas may be used to:
 - → explore energy consumption, GHG emissions and thermal comfort conditions in urban spaces
 - → quantitatively assess energy retrofit strategies and their impacts on the territory
 - promote smart green solutions (e.g. green roofs) with the use of financial mechanisms and incentives
 - → identify effective energy policies, considering the real characteristics of the buildings, of the population and of the urban morphology
- This assessment can play a significant role in the planning smart energy solution for a sustainable development at city level
- In addition, the use of a GIS tool through the implementation of an urban platform facilitates access to the data and the spatial representation of the results

Thank you for your attention!

Guglielmina Mutani & Valeria Todeschi*

*FULL, Energy Department, Polytechnic of Turin