JRC training for IUC China

Sustainable Energy and Climate Action Plan (SECAP)

Principles and Guidelines

The European Commission’s science and knowledge service
Joint Research Centre
The European Commission’s science and knowledge service
Joint Research Centre

The 10 key principles of a Sustainable Energy and Climate Action Plan

21 September Brussels 2017
The Joint Research Centre at a glance

3000 staff
Almost 75% are scientists and researchers. Headquarters in Brussels and research facilities located in 5 Member States.
Role of the JRC

- Research on existing methodologies and tools for the development of a SEAP
- Development of the guidebook “How to develop a (SEAP)”
- Continuous improvement of data collection process
- Evaluation of submitted SEAPs, with feedback to Covenant cities
- Development of a specific monitoring template & instructions for signatories
- Overall assessment of the initiative and publication of reports
- Capacity building (technical trainings for cities and regions)
Covenant of Mayors is a platform for inter-institutional co-operation, built on the principles of subsidiarity.

Common objectives and support is fixed at EU level, but ACTION takes place on the local level.

“... By connecting with our European partners and reinforcing our commitment to such valuable initiatives as the Covenant of Mayors, we can work together in strengthening Europe’s green economy...” Emer Costello, Lord Mayor of Dublin (IR)

“...It is important for me to be encouraged by others and maybe encourage people by our experience...” Bo Frank, Mayor, Växjö (SE)
The 10 key principles

The principles are linked to the commitments taken by Covenant signatories and constitute key ingredients of success. They are described in the Guidebook "How to develop a SEAP", Part I, which is currently being updated.
I. Approval by the municipal council (or equivalent decision-making body)

Strong political support is essential to ensure the success of the process, from SE(C)AP design to implementation and monitoring.
II. Commitment for a reduction of CO$_2$ emissions by at least 20% by 2020 and/or 40% by 2030

The SE(C)AP must specify the CO2 reduction objective of the local authority.

Ideally also:

- A longer-term target (e.g. to 2050)
- Targets on energy savings or on local energy production from renewables should be specified
- Sector-specific targets
Example of CoM Cities' objectives

Riga:
44% emission reduction by 2020

Ghent:
20% emission reduction by 2020
Carbon neutral by 2050

Amsterdam:
climate-neutral municipal organisation in 2015
40% emission reduction by 2020

Gothenburg:
21% emission reduction by 2020
<2 tons/capita by 2050
III. CO$_2$ baseline emission inventory (BEI) and risks and vulnerabilities assessment (RVA)

A sound knowledge of the local situation is necessary to carry out an assessment of the current framework which includes:

- CO$_2$ baseline emission inventory (BEI)
- Risks and vulnerabilities assessment (RVA)
- The data collection process should be well documented
IV. Comprehensive measures that cover the key sectors of activity

The SEAP has to contain a coherent set of measures covering the key sectors of activity

Before starting the elaboration of actions and measures, the establishment of a long-term vision with clear objectives is highly recommended.
The choice of sectors to tackle and of specific measures to implement is entirely left to the responsibility of the Signatory, depending on:

- **political mandate** of the Mayor
- **national framework** (regulations, grants, incentives, etc.)
- **size of the local authority** (availability of human & financial resources, expertise, etc.)

Priority areas for action EU CoM: Measures in the field of EE and RES

Breakdown of expected GHG emissions reduction by field of action in 2020
Strategic urban planning:

- The SE(C)AP can be an instrument to prevent rapid and uncontrolled city growth, by promoting mixed land use and encouraging sustainable mobility.

 Ex. Stockholm: efficient social planning, anticipating the increased demand for housing and transportation

Working with citizens and stakeholders:

- The SE(C)AP development and implementation requires coordination with citizens and other actors, consensus-building approaches, reduced duplication of efforts.
Example

Munich (1,4 million inh.): Energy saving concept

50 % of the city’s municipal buildings stock examined to identify potential for energy savings

Highest priority given to the renovation of properties in quadrant 1: high relative saving potential, but also a high absolute saving potential.
V. Strategies and actions until 2020 or 2030 (and possibly beyond)

The plan must contain a clear outline of the strategic actions that the local authority intends to take in order to reach its commitments in 2020 or 2030. It has to contain:

Long-term strategy and goals

Detailed measures for the next 3-5 years which translate the long-term strategy and goals into actions, with assigned responsibilities, cost estimations, impact estimations
Example

Stockholm (830000 inh.):

• 90% of buses will be powered by renewable fuels before the end of 2020
• 100% of newly registered private cars should be independent of fossil fuels by 2020
• The bus fleet will be fossil fuel-free by 2025
VI. Mobilization of all municipal departments involved

The SE(C)AP should outline which structures are in place or will be organised in order to implement the actions and follow the results.

It should also specify what are the human resources made available.

Example

In each municipality/city, different civil servants are involved in CoM. In total 1 FTE is reached by each participating municipality/city with less than 15,000 inhabitants for SEAP preparation and implementation. Municipalities and cities with more than 15,000 inhabitants reach 2 FTE.
The city management office is responsible for the administration of the SEAP and the Environment and health administration is responsible for developing and following up the SEAP.

Consultants aid in conducting background research and communication with some stakeholders.

A steering committee for development of the SEAP consists of representatives from the city management office, city development administration, traffic and waste administration, city planning administration and real estate administration.
VII. Engagement of all relevant stakeholders and empowerment of citizens

The plan has to describe how the civil society has been involved in its elaboration, and how they will be involved in implementation and follow up.

Build support from STAKEHOLDERS: if they support the SEAP nothing should stop it!
Sonderborg (75000 inh.): Project ZERO

Shift in focus in the elaboration and implementation of their plan:

From: the municipality initiating and proposing actions consulting the stakeholders
To: the municipality takes the role of a partner together with all interested parties in developing a vision for the local community

Public-private partnership called ProjectZERO: ZEROcarbon community by 2029: CO₂-neutral growth and sustainable urban development
A plan cannot be implemented without financial resources. The plan should identify the key financing resources that will be used to finance the actions.

Example

7) Foreseen financing sources for the implementation of your SEAP

- **Public**
 - Local Authority’s own resources: 54%
 - National Funds and Programmes: 36%
 - EU Funds and Programmes: 0%

- **Private**
 - Private: 100%
IX. Monitoring and reporting

The SE(C)AP should contain a brief outline on how the local authority intends to ensure the follow-up of the actions and monitor the results.

For each action, progress based indicators should be defined.

Regular adjustments of the actions based on new opportunities/findings.
X. **SE(C)AP submission and filling the template**

Covenant signatories commit to:

- submitting their SEAPs within 1-year following adhesion
- submitting their SECAPs within 2-year following adhesion

The SE(C)AP must be uploaded in national language via the Covenant of Mayor's website + online SEAP template in English.

The template has to be filled carefully with sufficient level of detail, and should reflect the content of the SE(C)AP.
An adaptation of the 10 key principles might be needed in order to better suit the different reality of local authorities in other regions of the world, compared to EU signatory cities.

Which key principles are already applicable?

Which ones need to be reconsidered?
The European Commission’s science and knowledge service
Joint Research Centre

Baseline Emission Inventory (BEI)

21 September Brussels 2017
BEI quantifies the amount of CO$_2$ emitted due to final energy consumption in given activity sectors on the municipality’s territory within a calendar year and it helps to select the appropriate actions.

Example: Castelldefelds (Spain)
CoM emission inventory: Main principles

- Emission Inventories as a **tool** to support the deployment and monitoring of local energy and climate policies;

- **Bottom-up approach** in activity data collection;

- **Simplicity and flexibility:** the approach can be adapted to the specific situation of local authorities (city size, level of expertise, political mandate, etc.);

- Main focus on CO$_2$ emissions associated with local **energy consumption**;

- **Four key sectors** to be accounted for in the BEI and targeted by SE(C)AP measures:
 - Municipal buildings & public lighting
 - Residential buildings
 - Tertiary buildings
 - Transport
The BEI shows where the local authority is at the beginning of the planning process, and the successive monitoring inventories will show the progress towards the objective.

Example: Sunderland, UK
The base year

The base year is the reference year for setting the objective.

The Covenant’s goal is to contribute to the EU commitment to reduce GHG emissions by 20% by 2020 and by 40% by 2030 compared to 1990.

The recommended baseline year is 1990.

If data availability is insufficient, then a subsequent year must be chosen.
The base year

Data from CoM BEI dataset (N=5,403, 97% from EU28) at 4th of September 2016, Kona A. et al., 2016

The population covered in the corresponding SEAPs is represented in relative terms by the size of the bubble.

...
The base year

For the territorial extensions of the Covenant beyond EU borders, the local economic situation was taken into account when recommending the base year.

For example for CoM East - originally covering countries from Eastern Europe and Central Asia - the recommendation is to use a more recent year which is representative of the current economic situation.
Definition of the boundary of the inventory

It is set by the administrative boundaries of the local authority signatory of the Covenant.

The majority of CoM signatories are municipalities, but there are also higher administrative units (e.g. provinces, regions, counties).

It coincides with the territory where the final energy is consumed and the one tackled by the SE(C)AP measures.

The signatory might choose not to tackle through any measures, sectors which are otherwise included in the inventory (not recommended).

Nevertheless the target applies to all emissions included in BEI.
Two key principles

1) The Covenant follows essentially (but not exclusively) a territorial approach, looking at the GHG emissions on the territory of the local authority.

2) The focus of the Covenant is on Final Energy Consumption and promoting distributed generation from renewable sources.
Steps in building an emission inventory

1.) Identifying the emission sources and collect activity data:

- Final energy consumption:
 - in buildings, equipment/facilities and industries
 - in transport

- Local generation of grid distributed energy (electricity, heat, cold)

 Considered indirectly, via emission factors, if included in SECAP

- Other emission sources (not related to energy consumption)
 (e.g. waste ...)

2.) Choosing the emission factors

3.) Calculating the GHG Emissions
CoM activity sectors

Buildings, equipment/ facilities
- Municipal
- Tertiary (commercial & non-municipal services)
- Residential

Urban transport (municipal, public, private)

<table>
<thead>
<tr>
<th>Focus on sectors that can be directly influenced by local policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buildings, equipment/ facilities</td>
</tr>
<tr>
<td>- Municipal</td>
</tr>
<tr>
<td>- Tertiary (commercial & non-municipal services)</td>
</tr>
<tr>
<td>- Residential</td>
</tr>
<tr>
<td>Urban transport (municipal, public, private)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other energy related sectors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Industries not involved in the EU ETS*</td>
</tr>
<tr>
<td>- Agriculture, Forestry, Fisheries (only energy consumption)</td>
</tr>
<tr>
<td>- Other road transportation (e.g. highways)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non energy related sectors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Wastewater and/or solid waste treatment (non energy related)</td>
</tr>
</tbody>
</table>

European Union Emissions Trading System (EU ETS)
CoM activity sectors

<table>
<thead>
<tr>
<th>Industries involved in the EU ETS</th>
<th>EXCLUDED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aviation, Shipping, Agriculture</td>
<td></td>
</tr>
<tr>
<td>(non energy related: enteric fermentation, fertilizer application, etc...)</td>
<td></td>
</tr>
</tbody>
</table>

A more comprehensive list of sectors to be included in the BEI is provided in the CoM Guidebook (JRC, 2010).
Key concepts and calculation rules

Activity Data * Emission factors = Emissions

- **Activity Data**
 - electricity consumed in municipal buildings [MWh\(_{electricity}\)]
 - Find the proper data related to your local authority

- **Emission factors**
 - amount of CO\(_2\) emitted per MWh electricity [tCO\(_2\)/MWh\(_{electricity}\)]
 - Most emission factors can be found in the Guidebook and in technical literature

- **Emissions**
 - total amount of CO\(_2\) emitted from electricity [tCO\(_2\)]

Most emission factors can be found in the Guidebook and in technical literature.
Key concepts and calculation rules

Activity data (AD)

AD quantifies the human activity occurring in the territory of the local authority.

Examples of activity data are:

- oil used for heating in residential buildings $[\text{MWh}_{\text{fuel}}]$
- electricity consumed in municipal buildings $[\text{MWh}_{\text{electricity}}]$
- heat consumed by residential buildings $[\text{MWh}_{\text{heat}}]$

It is strongly recommended to use data relevant for the local territory! If the inventory is built with national averages, the subsequent inventories will not show the effect of the actions implemented at local level!
Key concepts and calculation rules

Emission factors (EFs)

EFs are coefficients which quantify the emission per unit of activity. The emissions are estimated by multiplying the EF with the corresponding activity data.

Examples of EFs are:

- amount of CO$_2$ emitted per MWh of oil consumed [tCO$_2$/MWh$_{fuel}$]
- amount of CO$_2$ emitted per MWh electricity [tCO$_2$/MWh$_{electricity}$]
- amount of CO$_2$ emitted per MWh heat consumed [tCO$_2$/MWh$_{heat}$]
Choice of Greenhouse Gases (GHG)

Mandatory

Combustion & usage of fossil fuels

Inclusion (in CO₂ eq) recommended if actions are planed in related emitting sectors

Agriculture (77%)
Industry (8%)

Agriculture (49%)
Waste (31%)

Share of greenhouse gases EU27 – (EEA, 2009)

Fugitive emissions (15%)
GHGs and Emission factors

If GHG other than CO₂ are included in the BEI, then it is necessary to convert the amount of CH₄ or N₂O into CO₂ equivalents multiplying by Global Warming Potential coefficients:

TABLE 3. CONVERSION OF CH₄ AND N₂O TO CO₂-EQUIVALENT UNITS

<table>
<thead>
<tr>
<th>MASS OF GHG AS T COMPOUND</th>
<th>MASS OF GHG AS T CO₂-EQUIVALENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 t CO₂</td>
<td>1 t CO₂-eq</td>
</tr>
<tr>
<td>1 t CH₄</td>
<td>21 t CO₂-eq</td>
</tr>
<tr>
<td>1 t N₂O</td>
<td>310 t CO₂-eq</td>
</tr>
</tbody>
</table>

IPCC, Second Assessment Report
GHGs and Emission factors

Choice of emission factors

- **Standard emission factors, according to IPCC guidelines (Intergovernmental Panel on Climate Change) approach:**
 Based on the Carbon content of fuels.

 Advantages:
 - Simple;
 - In line with international reporting (UNFCC, Kyoto protocol...).

- **LCA (Life Cycle Analysis) emission factors:**
 Includes embodied emissions that occur upstream (e.g. emissions required to extract, transform, transport the fuel up to the city).

 Advantages:
 - Gives a better view of the global impact of the activities occurring in the territory
GHGs and Emission factors

<table>
<thead>
<tr>
<th>TYPE</th>
<th>STANDARD EMISSION FACTOR [t CO₂/MWh]</th>
<th>LCA EMISSION FACTOR [t CO₂-eq/MWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Gasoline</td>
<td>0.249</td>
<td>0.299</td>
</tr>
<tr>
<td>Gas oil, diesel</td>
<td>0.267</td>
<td>0.305</td>
</tr>
<tr>
<td>Residual Fuel Oil</td>
<td>0.279</td>
<td>0.310</td>
</tr>
<tr>
<td>Anthracite</td>
<td>0.354</td>
<td>0.393</td>
</tr>
<tr>
<td>Other Bituminous Coal</td>
<td>0.341</td>
<td>0.380</td>
</tr>
<tr>
<td>Sub-Bituminous Coal</td>
<td>0.346</td>
<td>0.385</td>
</tr>
<tr>
<td>Lignite</td>
<td>0.364</td>
<td>0.375</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>0.202</td>
<td>0.237</td>
</tr>
<tr>
<td>Municipal Wastes (non-biomass fraction)</td>
<td>0.330</td>
<td>0.330</td>
</tr>
<tr>
<td>Wood (§)</td>
<td>0 – 0.403</td>
<td>0.002 (§) – 0.405</td>
</tr>
</tbody>
</table>

(Com West Guidebook: table 4, p. 62)
In general, **biomass/biofuels** are a form of renewable energy, the use of which does not have an impact on the CO_2 concentration in the atmosphere. However, this is the case only if biomass/biofuels are produced in a **sustainable manner**.

In the absence of national regulations regarding the sustainability of biomass/biofuels, the local authority might use the criteria set in the **Directive 2009/28/EC** on the promotion of the use of energy from renewable sources. Only biomass/biofuels that meet these criteria should be considered as renewable in the context of the CoM.
Emission Factors for electricity

In order to calculate the CO$_2$ emissions to be attributed to electricity consumption it is recommended to use the national emission factor or the European one (NEEFE) \([\text{tCO}_2/\text{MWh}]\).

What if there is some local electricity production AND the local authority wants to take action in this field?

The municipality can correct the national emission factor with the local production of electricity by calculating the local emission factor for electricity consumption (EFE).
Steps in calculating the Local Emission Factor for electricity

1.) Deciding which local electricity production units should be included in the inventory according to the following decision tree:

Large (> 20 MW) Plants that are not operated by the local authority are not considered to be «local»

CoM West Guidebook, p. 64
2.) Calculating the Local Emission Factor for electricity:

\[
EFE = \frac{[(TCE - LPE - GEP) \times NEEFE] + CO_2LPE + CO_2GEP}{TCE}
\]

- **EFE** = Local Emission Factor for Electricity
- **TCE** = Total Consumption of Electricity
- **LPE** = Local Production of Electricity
- **GEP** = Green Electricity Purchased by the local administration
- **NEEFE** = National (or European) Emission Factor for Electricity
Steps in calculating the Local Emission Factor for electricity

EFs for heat
...if there is some heat sold / distributed as a commodity to end users? (e.g. district heating)

A local emission factor for heat (EFH) has to be calculated.

\[
EFH = \frac{CO_2_{LPH} + CO_2_{IH} - CO_2_{EH}}{LHC}
\]

- **LPH** = local heat production
- **IH** = imported heat
- **EH** = exported heat
- **LHC** = local heat consumption

CoM West Guidebook: p.67
Preparation of a Sustainable Energy & Climate Action Plan (SEACAP)

Minimum requirements for climate adaptation reporting

21 September Brussels 2017
Reporting requirements

The Sustainable Energy and Climate Action Plan (SECAP) and its Monitoring fields constitute the reporting framework of the Covenant of Mayors initiative. It has been developed by the Covenant of Mayors and Mayors Adapt Offices - together with the Joint Research Centre of the European Commission - and in collaboration with a group of practitioners from local and regional authorities. This Excel-based template is an offline working version of the official online template which has to be completed in English and submitted online via “My Covenant”: http://www.europov.org/sign-in_en.html The online version of this template should be available as of 2017. Please note that it is not possible to import the data entered in this Excel into the online platform.

Reporting Guidelines
SEAP guidebook
Urban Adaptation Support Tool

Commitments:
- 2020 CO₂ reduction
- 2030 CO₂ reduction
- Long-term CO₂ reduction
- Climate Adaptation

Colour codes:
- Mandatory input cells
- Optional input cells
- Output cells
- Pre-filled cells
- Definitions (visible when clicking)
- Monitoring Fields

Template Structure & Minimum Reporting Requirements:

<table>
<thead>
<tr>
<th>Template Structure</th>
<th>Minimum Reporting Requirements</th>
<th>Link to Tab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy</td>
<td>optional</td>
<td></td>
</tr>
<tr>
<td>Emission Inventories</td>
<td>optional</td>
<td></td>
</tr>
<tr>
<td>Mitigation Actions</td>
<td>optional (BEI)</td>
<td></td>
</tr>
<tr>
<td>Mitigation Report</td>
<td>optional</td>
<td></td>
</tr>
<tr>
<td>Monitoring Report</td>
<td>optional</td>
<td></td>
</tr>
<tr>
<td>Adaptation Scoreboard</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Risks and Vulnerabilities</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Adaptation Actions</td>
<td>optional optional (min. 3 benchmarks)</td>
<td></td>
</tr>
<tr>
<td>Adaptation Report</td>
<td>optional</td>
<td></td>
</tr>
<tr>
<td>Adaptation Indicators</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

* mandatory

Objectives
- IDENTIFY & ASSESS local climate and energy challenges and priorities
- MONITOR & REPORT progress towards commitments
- INFORM & SUPPORT decision-makers
- COMMUNICATE results to general public
- ENABLE self-assessment & FACILITATE experience-sharing with peers
- DEMONSTRATE local achievements to policy-makers

Developed by: Covenant of Mayors & Mayors Adapt Offices, Joint Research Centre of the European Commission
Published in: July 2016

The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the opinion of the European Communities. The European Commission is not responsible for any use that may be made of the information contained therein.
Overall strategy

1. COMMON FOR MITIGATION AND ADAPTATION
2. MEDIUM AND LONG TERM TARGETS
3. GENERAL VISION
4. ADMINISTRATIVE PRINCIPLES, STAFF, STAKEHOLDERS
5. FIRST ECONOMIC INDICATORS
6. FIRST SIGNATORY SELF ASSESSMENT
Mitigation actions

Summary of the energy action plan developed and submitted by the signatory

Include actions tackling the CoM sectors, trying to reduce the total emissions by the selected year in at least 40%.

- Actions can be grouped by sectors
- Business and usual approach (BAU)
- Administrative fields
- Economic fields
- Data fields
- Synergies with adaptation ("Adaptigation")

The more accurate, the better (but just some fields mandatory)
Adaptation scoreboard

Adaptation self-assessment
QUALITATIVE APPROACH

Overview of the capacity, status and principals of the Risk and vulnerability study developed

From SECAP of GHENT (Belgium)
Summary of the risk and vulnerability assessment developed and submitted by the signatory

- Qualitative systems
- Drop menu based
- Main sections:
 Climate hazard
 Vulnerabilities
 Impacts

<table>
<thead>
<tr>
<th>Climate Hazard Type</th>
<th>Current hazard risk level</th>
<th>Expected change in intensity</th>
<th>Expected change in frequency</th>
<th>Timeframes</th>
<th>Risk-related indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme Heat</td>
<td>Low</td>
<td>Increase</td>
<td>Increase</td>
<td>Long-term</td>
<td></td>
</tr>
<tr>
<td>Extreme Cold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extreme Precipitation</td>
<td>Moderate</td>
<td>Increase</td>
<td>Decrease</td>
<td>Medium-term</td>
<td></td>
</tr>
<tr>
<td>Floods</td>
<td>Moderate</td>
<td>Increase</td>
<td>Increase</td>
<td>Medium-term</td>
<td>Plural flooding</td>
</tr>
<tr>
<td>Sea Level Rise</td>
<td>Moderate</td>
<td>Increase</td>
<td>Increase</td>
<td>Medium-term</td>
<td></td>
</tr>
<tr>
<td>Droughts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storms</td>
<td>Moderate</td>
<td>Decrease</td>
<td>Decrease</td>
<td>Medium-term</td>
<td>Severe wind, rain storm</td>
</tr>
<tr>
<td>Landslides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest Fires</td>
<td>[please specify]</td>
<td>[Drop-Down]</td>
<td>[Drop-Down]</td>
<td>[Drop-Down]</td>
<td></td>
</tr>
</tbody>
</table>

From municipality of Bologna SECAP
Adaptation actions

Five key requirements

1. Identification of current and future climatic hazards
2. Identification of critical infrastructure
3. Active stakeholder participation
4. Avoid maladaptation
5. Estimate implementation action costs
Adaptation actions

Summary of the adaptation actions proposed in the plan

Same scheme as for mitigation

Synergies with mitigation

From municipality of Barreiro SECAP
Signatories need to select 3 mitigations measures/actions. On those, a first approach is applied to obtain financial figures to assess the economic potential of the initiative.
Monitoring reports

For mitigation and adaptation

Automatically generated figures showing the progress regarding commitments, estimations and achievements made by the signatory

Mitigation report. City of Pamplona, Spain

Adaptation report. City of Ghent, Belgium
SECAP validation and CoM monitoring requirements in the EU Covenant

21 September Brussels 2017
The SE(C)AP Evaluation Process

SE(C)AP Submission → Eligibility Check and Analysis of Data

- Simple & essential criteria based on the CoM commitments
- Semi-automatic analysis tool with about 40 checks

Accepted SEAPs
Not Accepted SEAPs

Detailed Feedback Report
The SE(C)AP Evaluation Process

3 steps

1. **Eligibility check**
 To check that the SE(C)AP is consistent with the Covenant formal commitments and principles (as defined in the commitment document)

2. **Data coherence check**
 To check that the data in the template are coherent and complete (mainly based on a computer-assisted analysis)

3. **Feedback report**
 To provide the Signatory with the results of the analysis and concrete recommendations for improvement
The SE(C)AP Evaluation Process

1. The SE(C)AP must be approved by the municipal council or equivalent body
2. The SE(C)AP must contain a clear reference to the CO$_2$ reduction objective by 2020 (\geq20%) and/or by 2030 (\geq40%)
3. The results of BEI and of the climate R&VA must be provided
4. The SE(C)AP must include a set of actions in the key sectors of activity
5. The SE(C)AP template must be correctly filled-in
6. The data provided must be coherent and complete

SECAPs that do not comply with all the above criteria cannot be accepted
| Sectors / Fields of action |
|---------------------------|--------|
| Municipal & public lighting | √ |
| Residential | √ |
| Tertiary | √ |
| Transport | √ |

4 KEY SECTORS whose inclusion is highly recommended

For mitigation, to be eligible a SE(C)AP must include:

- **BEI**, covering at least 3 out of 4 key sectors
- **A list of concrete measures**, covering at least the municipal sector and one or more other key sectors

[See guidebook]
ANNEX I

THE COVENANT OF MAYORS STEP-BY-STEP PROCESS & GUIDING PRINCIPLES

A COMMON ROADMAP FOR A SHARED VISION:

In order to meet their mitigation and adaptation targets, Covenant of Mayors Signatories commit to a series of steps:

<table>
<thead>
<tr>
<th>STEPS / PILLARS</th>
<th>MITIGATION</th>
<th>ADAPTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Initiation and baseline review</td>
<td>Preparing a Baseline Emission Inventory</td>
<td>Preparing a Climate Change Risk and Vulnerability Assessment</td>
</tr>
<tr>
<td>2) Strategic target setting & planning</td>
<td>Submitting a Sustainable Energy and Climate Action Plan (SECAP) and mainstreaming mitigation and adaptation* considerations into relevant policies, strategies and plans, within two years following the municipal council decision</td>
<td></td>
</tr>
<tr>
<td>3) Implementation, monitoring and reporting</td>
<td>Report progress every second year following the SECAP submission in the initiative's platform</td>
<td></td>
</tr>
</tbody>
</table>

* The adaptation strategy should be part of the SECAP and/or developed and mainstreamed in (a) separate document(s). Signatories can opt for the format of their choice – see the “adaptation pathway” paragraph hereafter.
Why is monitoring important?

- To monitor how actions defined in SE(C)APs are progressing and evaluate their effects towards the targets

- To identify the need of adjustments to the plan, e.g. corrective measures

- To take new opportunities not initially foreseen, e.g. changes to the national/international context

Is the signatory on track to reach the target?
CoM monitoring requirements

<table>
<thead>
<tr>
<th>Year 0</th>
<th>Year 2 (2014)</th>
<th>Year 4 (2016)</th>
<th>Year 6 (2018)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEAP</td>
<td>'Action Report'</td>
<td>'Implementation Report'</td>
<td>'Action Report'</td>
</tr>
<tr>
<td>Status of the actions</td>
<td>Inventory/ impacts of actions</td>
<td>Status of the actions</td>
<td></td>
</tr>
</tbody>
</table>

Qualitative

2012

Quantitative

2014

2016

2018
What is monitored under the CoM

Based on quantitative reports

Trends analysis

• Energy consumption

• Share of biofuels on total fuel consumption

• Share of local energy production on total energy consumption

• Emissions
In the context of the Covenant, the main indicators are those linked to energy consumption or level of emissions per unit of measure, e.g.:

- Per capita energy consumption, by fuel and mode [MWh/capita]
- Carbon intensity of transport [t CO\(_2\)/pkm] or [t CO\(_2\)/Vkm]

Other suggested indicators:

- Public transport ridership [pkm/capita]
- Car passenger traffic [pkm/capita]
- Number of vehicles passing fixed point per year/month
- % of population living within 400 m of a bus service
- ...
Examples [1]

<table>
<thead>
<tr>
<th>Municipal - Residential - Tertiary Buildings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building envelope</td>
<td>Number/surface area of buildings insulated [m²]</td>
</tr>
<tr>
<td>Energy efficiency in space heating and hot water</td>
<td>Number of boilers replaced [-]</td>
</tr>
<tr>
<td>Energy efficient lighting systems</td>
<td>Number of lamps replaced [-]</td>
</tr>
<tr>
<td>Energy efficient electrical appliances</td>
<td>Number of electrical appliances replaced [-]</td>
</tr>
<tr>
<td>Renewable energy for space heating and hot water</td>
<td>Surface area of solar thermal panels installed [m²]</td>
</tr>
<tr>
<td>Integrated action</td>
<td>Number/surface area of buildings retrofitted [m²]</td>
</tr>
<tr>
<td>ICT</td>
<td>Number of buildings with smart meters installed [-] / Number of new buildings with domotic systems [-]</td>
</tr>
<tr>
<td>Behavioural changes</td>
<td>Number of participants in awareness raising campaigns [-] / Number of CFLs distributed [-]</td>
</tr>
</tbody>
</table>
Municipal - Public - Private Transport

<table>
<thead>
<tr>
<th>Category</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaner/efficient municipal vehicles</td>
<td>Number of vehicles replaced [-]</td>
</tr>
<tr>
<td>Municipal fleet - efficient driving behaviour</td>
<td>Example: no. of courses given on total planned (%)</td>
</tr>
<tr>
<td>Cleaner/efficient public transport</td>
<td>Number of new buses purchased [-]</td>
</tr>
<tr>
<td>Public transport infrastructure, routes and frequency</td>
<td>Network extension (km) / Number of services per day [-]</td>
</tr>
<tr>
<td>Electric vehicles infrastructure</td>
<td>Number of charging points [-]</td>
</tr>
<tr>
<td>Car sharing</td>
<td>Number of car share vehicles and locations [-]</td>
</tr>
<tr>
<td>Walking & cycling</td>
<td>Number of bicycle parking spaces [-]</td>
</tr>
<tr>
<td>ICT</td>
<td>Number of roads with Variable Speed Limits (VSB) introduced [-] / Number of teleworking schemes in place [-]</td>
</tr>
<tr>
<td>Efficient driving behaviour</td>
<td>Example: no. of courses/campaigns realised on total planned (%)</td>
</tr>
</tbody>
</table>
Challenges of data collection and management

21 September Brussels 2017
Guiding principles of the CoM approach

- **Scientific soundness** → knowledge of starting point (BEI)

- **Territorial approach**

- **Focus on FINAL energy consumption:**
 - In Buildings, equipment/facilities (and industries):
 → Municipal sector (exemplary role of the local authority)
 → Residential sector
 → Tertiary sector
 - Transport

Actions on Energy Efficiency and implementation of Renewable Energies
Bottom-Up versus Top-Down approaches

- Ideally a full **Bottom-Up** approach should be followed.
- **Top-Down** approaches might not give an accurate picture of the municipality.

Will the Monitoring Emission Inventories capture the results of local actions?
CHALLENGES IN DATA COLLECTION
Structure of national/regional statistical data

1. Activity sectors

2. CoM sectors

- Municipal Buildings, equipment/ facilities
- Tertiary Buildings, equipment/ facilities
- Residential Buildings, equipment/ facilities
- Public lighting
- Industries (non ETS)
- Municipal Fleet
- Public transport
- Private and Commercial transport

Sweden

CoM
Legend of colours and symbols:
- **Green fields are compulsory**
- **Grey fields are non editable**

A. Final energy consumption

Please note that for separating decimals dot [.] is used. No thousand separators are allowed.

<table>
<thead>
<tr>
<th>Category</th>
<th>Electricity</th>
<th>Heat</th>
<th>Natural gas</th>
<th>Liquid gas</th>
<th>Heating oil</th>
<th>Diesel</th>
<th>Gasoline</th>
<th>Lignite</th>
<th>Coal</th>
<th>Other fossil fuels</th>
<th>Plant oil</th>
<th>Biofuel</th>
<th>Other biomass</th>
<th>Solar thermal</th>
<th>Geothermal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUILDINGS, EQUIPMENT / FACILITIES & INDUSTRIES</td>
<td></td>
</tr>
<tr>
<td>Municipal buildings, equipment/facilities</td>
<td>0</td>
</tr>
<tr>
<td>Tertiary (non municipal) buildings, equipment/facilities</td>
<td>0</td>
</tr>
<tr>
<td>Residential buildings</td>
<td>Data</td>
</tr>
<tr>
<td>Public lighting</td>
<td>0</td>
</tr>
<tr>
<td>Industries (excluding industries involved in the EU Emission trading scheme - ETS)</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>2564000</td>
<td>856000</td>
<td>3617000</td>
<td>0</td>
<td>4475000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>318000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TRANSPORT</td>
<td></td>
</tr>
<tr>
<td>Municipal fleet</td>
<td>0</td>
</tr>
<tr>
<td>Public transport</td>
<td>0</td>
</tr>
<tr>
<td>Private and commercial transport</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>130000</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2702000</td>
<td>865000</td>
<td>3617000</td>
<td>0</td>
<td>4475000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>318000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Overview of data quality

- Energy consumption of buildings, vehicles, lighting systems and other facilities operated by \textit{municipality} is usually adequately registered.

- Energy consumption data in \textit{residential & commercial} sector are of a poor quality.

- Data on \textit{Local Heat and Electricity Production} may be hard to find when plants are privately operated.

- \textit{Transport} sector estimations of emissions are based on statistics and very often outdated assumptions.
Overview of data quality

- Data reporting remains a major challenge for signatories and the level of details in the templates shows a certain country dependence.

- For templates with a good level of details:
 - **Electricity** consumption and its split by Covenant sub-sectors are generally reported.
 - When relevant, data on **Natural Gas** consumption are indicated, even though the split by Covenant sub-sectors can be more challenging.

- Split by **Covenant sub-sectors** may be a challenge.

- Energy consumption data in **Private/Commercial Transport** are usually challenging.
Suggestions on data collection

We want to look at energy-related emissions ‘cities’ are ‘fully accountable’ for...

1. Energy-related ...some sectors are not the focus of the CoM!
 - Food and consumer goods;
 - Deforestation;
 - Fugitive emissions...
 Is the methodology and data allowing to evaluate emissions over time available?

2. Full accountability... e.g. how do we deal with electricity?
 - The majority of the electricity consumed in municipalities is generally produced elsewhere;
 - CO₂ emissions are accounted for using regional or national EFs which should be kept constant throughout the years;
 - In case of local electricity production a Local Emission Factor should be calculated.
 ...and with sectors LAs cannot influence (Aviation, heavy industry)?
 ➞ Generally to be excluded
Suggestions on data collection

Focussing on the TRANSPORT sector

Municipal and public transport

Private and commercial transport

- Traffic Monitoring Systems
- Fuel sales within the territory
 → Corrections and data analysis are needed:
 - Interurban transportation;
 - Vehicles registered in the territory;
 - Tourism?
Data collection: tips from CoM

Projects co-funded under Intelligent Energy Europe Programme addressing the specific challenges in data collection for the Covenant signatories:

- **MeShaRtility project** (Measure and share data with utilities for the Covenant of MaYors), duration: April 2012 - April 2015, target region: EU in general, specifically addressing 12 countries: Bulgaria, Croatia, Cyprus, Estonia, Germany, Italy, Latvia, Malta, Poland, Romania, Slovenia, Spain, http://www.meshartility.eu/en/

Summary report about good data sharing practices at EU level, 2015

Projects co-funded under Intelligent Energy Europe Programme addressing the specific challenges in data collection for the Covenant signatories:

 Data4Action, aims to foster *win-win energy data exchange collaboration models* between public authorities and energy data providers moving from bilateral data exchange cooperation agreements to *regional «one-stop shop» data centres* («Observatories»).

Data Access Guidebook for Sustainable Energy Actions Plans, 2016,

The report can be downloaded from:

National initiative

Centralized data collection at national level are facilitating data collection at local level

- Netherlands and Denmark have developed tools which provide energy and climate data per activity sector, broken down at least at municipal level.

- Cyprus Energy Agency has developed a tool which provides the local authorities with all the energy consumption information required in order to establish their CO2 inventory.

- The main aim of these tools was to assist the local authorities in implementing and monitoring local energy and climate action plans.

 - Climate Monitor, Netherlands, since 2009, www.klimaatmonitor.databank.nl
 - Municipal Carbon Inventory Tool, Denmark, since 2008, http://www.ens.dk/undergrund
Covenant supporters play a key role in helping small and medium size local authorities to collect the data

- Energy data base of the province of Limburg:

The province of Limburg with partners established a data base containing the results of Baseline Emission Inventory, Renewable energy scan, Sustainable building scan and a Set of climate indicators prepared for each of the Limburg (44) municipalities. This was done to encourage municipalities to sign the Covenant of Mayors and draft up a SEAP (Sustainable Energy Action Plan). By doing this, the province of Limburg wants to reach their goal, set in 2008: becoming climate neutral in 2020” *

*Improving access to local energy data. Lessons learnt and recommendations from the meshartility project”, 2015
Conclusions

- Energy consumption data has to be **relevant** to the particular situation of the municipality (**national averages will not** reflect in the subsequent monitoring inventories the effect of the actions implemented at local level!)
- The data collection process requires time and resources. Planning is crucial!
- **Sources** of data (see guidebook page 70)
 - **Invoices** (e.g. for the own buildings of the local authority)
 - Market operators (energy suppliers, **grid operators**)
 - **Ministries** (energy, statistics, environment), agencies, regulatory authorities
 - Surveys addressed to energy consumers
Conclusions

- Good quality and **reliable** data is essential
- The **availability** and **sources** of energy data are country/region dependent
- **Difficult** to assess the consumption of energy vectors that are **not distributed via a grid** (heating oil, biomass ...). Surveys are often required to complement this data.
- Importance of **utilities /energy suppliers / grid operators**: they own the **primary data**!!!
- **Territorial coordinators** (e.g. supporting structures) and other National/ regional authorities can play a **key role** in collecting data and making it available to local authorities
- **Aggregated data** is not enough: need data for each energy vector, for community, for each category of customer (households, public sector, industry, services)
- Data related to **transport** and mobility: **difficult** to be estimated
Stay in touch

EU Science Hub: ec.europa.eu/jrc

Twitter: @EU_ScienceHub

Facebook: EU Science Hub - Joint Research Centre

LinkedIn: Joint Research Centre

YouTube: EU Science Hub